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Abstract
We study the structure of chains which have anisotropic short-range contact
interactions that depend on the alignment of the binormal vectors of chain
segments. This represents a crude model of hydrogen bonding or ‘stacking’
interactions out of the plane of curvature. The polymers are treated as ribbon-
like semi-flexible chains, where the plane of the ribbon is determined by the
local binormal. We show that with dipole–dipole interactions between the
binormals of contacting chain segments, mean-field theory predicts a first-order
transition to a binormally aligned state. We describe the onset of this transition
as a function of the temperature-dependent parameters that govern the chain
stiffness and the strength of the binormal interaction, as well as the binormal
alignment’s coupling to chain collapse. We also examine a metastable state
governing the folding kinetics. Finally, we discuss the possible mesoscopic
structure of the aligned phase, and application of our model to secondary
structure motifs like β-sheets and α-helices, as well as composite structures
like β-(amyloid) fibrils.

PACS numbers: 82.35.Jk, 87.15.−v, 87.15.Nn

1. Introduction

The ‘mesoscopic’ Hamiltonian has been a staple of polymer physics for the better part of a
century, neglecting the chemical details of polymers in order to predict their behaviour entirely
from simple geometric and energetic concerns. There exist a number of successful treatments
of polymer solutions based on mesoscopic Hamiltonians, both for ‘phantom’ chains without
excluded volume and for polymers with very simple inter-chain interactions; nematic [1–5],
mixed [6, 7] or diblock polymer melts, and collapsing homopolymer [8–10] systems have each
been modelled by mean-field theories or low-order loop corrections to the mean field. While
the abstraction from chemistry that these mesoscopic models involve has been enormously
useful, physicists have been restricted to a limited number of analytical approaches, primarily
simple Edwards contact potentials that apply equally to all chain contacts, or, in the case
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Figure 1. Worm-like chain with binormal vectors shown at the points of contact along the chain
(grey circles). For λ < 0, the binormal interaction term of equation (17) favours aligned binormals
like that at the left, while penalizing opposing binormals as at the centre, and neglecting nearly
perpendicular binormals as at the far right.
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Figure 2. Schematic diagrams of chains with directional interactions, represented by dotted arrows,
that are perpendicular to the plane of curvature. From the left, a single peptide residue. The dashed
black bonding arrows point along the O → H direction of the hydrogen bond. In the centre, a bit
of poly-benzothiophene chain, which has π -stacking interactions between aromatic groups. On
the right—the abstracted chain we deal with in this paper. Here, bonding can occur at any point
along the chain rather than at specific sites.

of nematic systems, an Edwards potential weighted by the chains’ alignment. This neglects
the highly directional nature of most chemical bonds and residue interactions. Admittedly,
Lennard–Jones potentials and other, more realistic inter-chain forces feature prominently in
Monte Carlo and molecular dynamics treatments. However, the simplicity and transparency
of analytic methods makes the prospect of incorporating realistic, directional interactions into
analytic models an appealing one.

We hope to further this goal by introducing an analytic model of single-stranded polymer
chains with hydrogen-bond-like interactions. In particular, we introduce anisotropic contact
interactions whose energy depends upon the orientation of the binormal vectors of intersecting
chain segments, represented graphically in figure 1.

This interaction between binormals models the behaviour of chains whose backbones are
decorated with dipoles that point in the direction of the chain binormal, perpendicular to the
local plane of curvature as seen in the chains shown in figure 2. We intend this to serve as
a crude representation of hydrogen bonds or other short-range, highly directional, ‘stacking’
interactions, like those between aromatic rings. These interactions are important to the
behaviour of peptides and other single-stranded biopolymers, as well as artificial helicogenic
polymers. Indeed, we can see that ordered structures such as α-helices and β-sheets correspond
to polymers with aligned binormals, as figure 3 illustrates in the case of the α-helix. In fact,
we go on to argue that the ground state of a single binormally aligning chain with excluded
volume should be just such a helix.

We begin by reviewing the classical semi-flexible chain model used to describe wormlike,
non-interacting polymers. However, we will at once see that in order to treat binormal
interactions, we must incorporate higher-order derivatives along the chain length than those
of the semi-flexible model. We therefore consider a ‘bare’ chain Hamiltonian in section 2,
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Figure 3. Diagram of α-helix, with hydrogen bonds indicated by spaced parallel lines. The grey
dotted arrows denote the direction of the local binormal vector, while bavg marks the average
binormal produced by summing the local binormals along the entire helix length.

with a new compression-volume parameter vp which regulates these higher-order terms. We
proceed to find values of vp that reproduce the classical semi-flexible chain statistics for
a given persistence length lp, thus fixing vp and making contact with traditional polymer
theories. With this formalism in place, one can examine the interaction between binormal
vectors, which we define in the context of the ‘Frenet–Serret’ frame and its associated vector
triplet. We incorporate interactions between binormals through a modified contact potential,
then define a binormal alignment order parameter ψ corresponding to bavg in figure 3, and
expand the free energy in powers of |ψ|.

This expansion indicates that there is a first-order transition to a binormally aligned state
as one increases the interaction strength |λ|, as could be induced experimentally by changes
in temperature, solvent quality or ion concentration. Following the analogy with hydrogen
bonding, we go on to speculate about the structure of the binormally aligned phase and its
connection to helical or sheet motifs. We also observe that a collapse to a globule or a high
chain concentration is necessary for a binormally ordered phase to emerge. Thus, our proposed
binormal phase transition should occur as part of a sequence: coil-to-globule, then globule-
to-ordered globule. This is clearly analogous to protein folding, which hierarchical models
describe as starting with a collapse to a globular ‘liquid droplet’ followed by a local ordering
into secondary structure motifs. Protein folding finishes with a tertiary-structure-forming
phase we do not treat, but the resemblance to our model’s sequence of phase transitions is
significant. Ultimately, we assert that the model generates secondary structure motifs like
β-(amyloid)-sheets, β-fibrils and α-helical structures from the generic polymer interaction we
introduce.

2. Modified semi-flexible chain

Let us review the classical theory of a semi-flexible polymer chain, whose configuration is
defined by the curve rs , with r being the spatial position of the monomer at a contour length
s along the chain. In order to make this a model of polymers like actin or DNA which are not
freely jointed, the energy of a configuration must depend on the chain’s curvature. Indeed,
this is the defining feature of the semi-flexible (or ‘worm-like’) chain model [11], for though
a number of specific forms [12] have been proposed for the Hamiltonian of a semi-flexible
chain, all incorporate a quadratic bending energy of the form

Ebend =
∫ L

0
ds

ε

2
[κ(s)]2. (1)
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Here κ is the curvature defined as κ = u′
s/|us |, where us = drs/ds is the tangent vector of

the backbone, and the prime denotes the gradient along s, e.g. (u′
s = dus/ds).

Semi-flexible theories usually proceed by parameterizing the chain by its tangent vector us

rather than segment position rs , and establishing the constraint |us | = 1. This constraint can
be satisfied exactly at all points on the chain, as in the Kratky–Porod chain [13], or through
an average length constraint

∫ L

0 ds (us)
2 = L. Insofar as this average-length treatment is

more analytically tractable than the Kratky–Porod model, in this paper we will adopt the
average-constraint model and its associated Hamiltonian [14, 15]:

βH[us] =
∫ L

0
ds

[
lp

2

(
dus

ds

)2

+ φ
(
u2

s − 1
)]

, (2)

where β is the inverse temperature (kT )−1 and lp is the persistence length (=ε/kT from
equation (1)) over which the chain ‘remembers’ its direction. The mean value of the auxiliary
field φ acts as a Lagrange multiplier to keep the constraint of average unit tangent length.

Let us now consider a slightly altered version of the chain Hamiltonian presented in
equation (2), one which includes a higher-order gradient term of the form 1

4vp(d2us/ds2),
where vp is a parameter we will refer to as the compression volume. Physically, this
volume represents a scale over which changes in the rate or direction of the chain’s curvature
contribute to the energy. At the moment the addition of this term seems unnecessary and
potentially complicating; the analogous ‘jerk’ terms like v̈(t) in classical mechanics bring
one into the regime of non-integrable dynamics [16]. Nevertheless, a higher-order gradient
term will prove to be necessary to deal with the interactions introduced later in section 3.
Higher-order gradients of some sort are also required to account for chiral effects like torsion,
τ ∝ us · (u′

s × u′′
s ) [17, 18]. As such, we will persist in treating this term on the provisional

assumption that its presence is justified, as we will discuss in later sections. With the
higher-order change-of-curvature gradient term in place, the semi-flexible Hamiltonian of
equation (2) becomes

βH[us] =
∫ L

0
ds

[
vp

4

(
d2us

ds2

)2

+
lp

2

(
dus

ds

)2

+ φ
(
u2

s − 1
)]

. (3)

This new Hamiltonian can be evaluated in terms of the Fourier components un of the tangent
vector, where we have us = ∑∞

n=−∞ un e2iπn/L. Note that this Fourier decomposition amounts
to a choice of periodic boundary conditions in the tangent vector us , a negligible effect in the
limit of large L. We so arrive at the Fourier-space version of the Hamiltonian (3), which is a
quadratic form over the set of un,

βH[un] = −φL +
∞∑

n=−∞

(
vp

4

(
2πn

L

)4

+
lp

2

(
2πn

L

)2

+ φ

)
unu−n.

Taking the Gaussian integral over each of the possible un in the partition function Z =∫
D[un] dφ exp(−βH), and so deriving the free energy βF = − ln Z, we obtain

βF = −φL +
1

2
ln

[
det

(
vp

4

(
2πn

L

)4

+
lp

2

(
2πn

L

)2

+ φ

)]
. (4)

We now use the identity ln(det[M ]) = tr(ln[M ]), where M is an arbitrary matrix, to evaluate
the determinant as below,

βF = −φL +
3

2

∫ ∞

−∞

L

2π
dq ln

(
vp

4
q4 +

lp

2
q2 + φ

)
, (5)
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where we have substituted integration over the continuous variable q for the summation over the
discrete values of (2πn/L) in the trace, and assumed the 3D space. Applying the saddle-point
approximation for the Lagrange multiplier φ, namely ∂F/∂φ = 0, we see

−L +
3

2

∫ ∞

−∞

L

2π
dq

1
1
4vpq4 + 1

2 lpq2 + φ
= 0. (6)

Evaluating the integral and dividing out by L, we find after a small rearrangement√
1

2
lp +

√
1

4
l2
p − vpφ −

√
1

2
lp −

√
1

4
l2
p − vpφ = 8

√
2

3
φ1/2

(
1

4
l2
p − vpφ

)1/2

. (7)

Simplifying, one discovers that finding the optimal φ amounts to solving the cubic equation(−81 + 144φlp − 64l2
pφ2 + 256vpφ3) = 0. (8)

The exact roots of this equation are rather complicated, and we simply denote the optimal
energy-minimizing value of φ as φ1(vp, lp); the other two roots of the cubic equation can
be shown to be unphysical for the regime of vp ∼ O(1)l3

p we will now discuss. The
complex form of equation (8) and its solutions stands in contrast to the simple result for the
Lagrange multiplier, φ = 8/(9lp), that one obtains for the semi-flexible chain governed by
the Hamiltonian of equation (2) [14, 15].

We now can evaluate the tangent–tangent propagator

〈us · us ′ 〉 =
∫ ∞

−∞

L

2π
dq

eiq(s−s ′)

1
4vpq4 + 1

2 lpq2 + φ1
(9)

which is another complicated form, obtained after the integration:

〈us · us ′ 〉 =
(

1
1
2 lpµ+ + 1

2vpµ3
+

+
1

1
2 lpµ− + 1

2vpµ3−

)−1

×
(

e−µ+|s−s ′ |
1
2 lpµ+ + 1

2vpµ3
+

+
e−µ−|s−s ′ |

1
2 lpµ− + 1

2vpµ3−

)
, (10)

where the shorthand parameters µ± are the positive roots of a quadratic vpµ4/4 + lpµ2/2 +
φ1 = 0, that is

µ2
± = 1

vp

(
lp ±

√
l2
p − 4φ1vp

)
. (11)

For an arbitrary vp, equation (10) indicates a multi-exponential decay of correlations in the
tangent direction with chain length s, as one might expect for a chain that has two length scales
in lp and vp/l2

p. This stands in contrast to the single-exponential tangent–tangent correlator
of the classic semi-flexible chain, which Ha and Thirumalai [14, 15] found to be

〈us · us ′ 〉 = e−3(2lp)−1|s−s ′ | (12)

for the Hamiltonian of equation (2). However, we can recover this classical single-exponential
behaviour when µ+ = µ−, which occurs for v∗

p = 4l3
p

/
9. In the absence of experimental data

to suggest a multi-exponential tangential correlator for a chain, we clearly wish to emphasize
this case. In fact, applying v∗

p and the solution φ1(v
∗
p, lp) to equation (10), we recover the

exact form of the semi-flexible chain propagator of equation (12). Since the physically relevant
quantities 〈S2〉 and 〈R2(s − s ′)〉 all follow from this tangential propagator, the modified chain
of equation (3) will therefore fully resemble a classical semi-flexible chain if one fixes vp

at v∗
p. In this way, the formal modifications to the chain Hamiltonian made in equation (3)
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can remain ‘invisible’ and experimentally unobservable (but still fulfilling their crucial role in
making the system integrable). We therefore feel justified in applying the theory of binormal
interactions that we will present in the next section to what otherwise appear to be classic,
semi-flexible chains in experiments.

3. Binormal interactions

Having developed the formalism of a modified semi-flexible chain, let us now examine the
binormally interacting case. This will not prove trivial, as the theory of semi-flexible polymers
has not yet been as successful as earlier flexible models in describing polymers with excluded
volume and other contact interactions. In dealing with fully flexible chains, polymer physics
has made much use of the Edwards contact potential Econtact = νδ[rs−rs ′ ] where ν is a constant
[8] related to the second virial coefficient of chain self-interaction. However, this pair potential
has only been applied to semi-flexible chains by approximate, perturbative techniques [19, 20]
and without the deep connections to the φ4 renormalization group established for fully flexible
chains [21–23]. Nevertheless, Edwards and Gupta [2, 3] successfully introduced a mean-field
theory of nematic semi-flexible chains with short-range (contact) interactions that tend to align
the chains tangential vectors, Econtact ∝ −(us ·us ′)2δ[rs − rs ′ ]. This model has seen wide
applications in liquid crystal systems and even been incorporated into analytic treatments of
protein-like rod-coil systems [24, 25]. We propose an extension of these methods to account
for anisotropic interactions between polymers, motivated by both Monte Carlo studies of helix-
forming chains that suggest anisotropic interactions are key to peptide secondary structures
[26], and a desire to approximate the effects of hydrogen bonding in peptide α-helices and
artificial helical polymers, where the direction of bonding is perpendicular to the chain’s plane
of curvature. To do so, we will consider interactions between the binormal vectors of a chain,
which we define below.

Let us return to the case of a polymer with a backbone trajectory that follows the
continuous, differentiable space curve rs . Given rs , we can define a Frenet–Serret frame
of three orthogonal vectors [17] that rest on the curve: the unit tangent vector ûs , the unit
normal vector n̂s , and the unit binormal vector, b̂s , which are given by the relations

ûs = r′
s

|r′
s |

, n̂s = û′
s

|û′
s |

, b̂s = ûs × n̂s , (13)

where the ‘hat’ symbol marks vectors normalized to unit length.
The derivatives of the unit frame vectors with respect to s, which we again denote by the

prime symbol, e.g. r′
s = dr/ds, are linked to the original frame vectors by the Frenet–Serret

formula(s)

û′
s = κ(s)n̂s (14)

n̂′
s = −κ(s)ûs + τ(s)b̂s (15)

b̂′
s = −τ(s)n̂s , (16)

where κ(s) is the curvature and τ(s) = (us · [u′
s × u′′

s ])/[κ(s)]2 is the torsion for a chain with
unit tangent length.

Since it fully specifies the orientation of a chain, the Frenet–Serret frame suggests itself
naturally as a tool for polymer physics and has a long history of applications [12, 18]. In
physical terms, the tangent is simply the instantaneous direction of the backbone and the
normal the direction of its curvature. Taken together at a given s, the tangent and normal
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b

n
u

κ−1

Figure 4. Directed, ribbonlike polymer with associated Frenet–Serret frame of tangent (u), normal
(n) and binormal vectors (b). Following the convention that the polymer curves along its ‘thin’
direction, the binormal will always point along the ribbon’s thicker direction. We also indicate the
radius of curvature (κ−1) in a region of roughly constant curvature.

vectors define the local plane of curvature of the space curve, while the binormal defines the
perpendicular to that plane [17, 27]. Analogously, if one imagines a polymer chain as an
oriented ribbon which can only curve along its ‘thin’ direction as in figure 4, the binormal
defines the direction of the plane of the ribbon. This fact has been explicitly developed to
model ribbon-like polymers [28–31] with separate bending moduli along the two axes of the
ribbon. These models display interesting twist dynamics [31] and phase behaviour [29] as a
result of their local anisotropy.

Having defined the binormal vector on a chain, we modify equation (3) to include a
‘dipolar’ interaction based on the binormal (rather than tangential) alignment of two crossing
polymer segments.

βH[us , bs] =
∫ L

0
ds

[
vp

4

(
d2us

ds2

)2

+
lp

2

(
dus

ds

)2

+ φ(u2
s − 1)

]

+ λ

∫ L

0
ds ds ′ (bs · bs ′) δ[rs − rs ′ ] + ν

∫ L

0
ds ds ′ δ[rs − rs ′ ]. (17)

Note that we use the full binormal bs = [us × u′
s], and not the unit vector, b̂s = [us ×

u′
s]/(|us ||u′

s |), in establishing the binormal interaction, whose strength and aligning/anti-
aligning character are controlled by the magnitude and sign of λ, respectively. In addition
to the binormal interaction, we include the term parameterized by ν as a usual Edwards
contact potential that determines the energy of intersecting chain segments irrespective of
their binormal alignment [8].

Though the form of equation (17) is fairly straightforward, its physical interpretation
merits further discussion. First, we note that defining the (variable-length) binormal vector as
bs = [us × (dus/ds)] and not as a free, auxiliary field as others have done [28–31] means
that the chain is completely inflexible in the direction of the binormal, i.e. has infinite bending
modulus for curvature in the binormal plane. However, our Hamiltonian lacks an explicit
twist-energy term ∝(dbs/ds)2 common to many treatments of ribbon-like polymers, so the
plane of the polymer’s curvature appears free to rotate in our model. The absence of a twist
term is grounded in concerns about the integrability of this term for our definition of bs , and
the observation that the twist rotation of many biomolecules is much shorter than their overall
persistence length, e.g. dsDNA has a 3 nm pitch against its 120 nm persistence length [32].
Regardless, we will see that changes in the direction of the binormal are constrained by the
change-of-curvature term in our Hamiltonian ∝ vp.

Indeed, the reasons for adding the change-of-curvature term to equation (17) are still not
obvious. We can first justify this term’s presence by noting that the binormal alignment terms
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controlled by λ should contribute an energy proportional to the curvature squared. Thus, if we
have a Hamiltonian that has a bending energy penalty Ebend = 1

2 lp[κ(s)]2, a negative λ with
|λ| > lp/2 will result in the chain having a negative energy penalty associated with curvature.
This situation mirrors a Lagrangian dynamical system with a potential energy depending on
acceleration, leading to an effective negative mass [16]. We must avoid such a disaster by
accounting for higher-order chain-gradient terms in our Hamiltonian, similar to the case in the
work of Gupta and Edwards [2]. Taking the lowest-order such term, ∝(d2us/ds2) is analogous
to adding a kinetic energy term with v̈(t) in Lagrangian dynamics. While the inclusion of
such a term might be difficult to justify in a dynamical Hamiltonian, it emerges much more
plausibly in a description of the mechanical response of materials like the semi-flexible model
of a polymer chain.

We also note that the (d2us/ds2) term recapitulates the influence of the seemingly
neglected twist-energy term ∝ (dbs/ds)2. Indeed, the Frenet–Serret connection b′

s = τ(s)ns

(where τ(s) is the torsion) between the normal vector ns and binormal vector bs means that vp

effectively penalizes changes to n by the relation u′′
s = d/ds([τ(s)]−1b′

s). Working through
with the chain rule, it follows that 1

4vp (d2us/ds2) contributes to an effective twist-energy
term.

Finally, we observe that our choice of a dipolar interaction for the binormal alignment
may not be as directionally specific as real hydrogen bonds [26]. Nonetheless, the dipolar
form offers the benefits of being analytically tractable and the natural first term in a multipolar
expansion of any more complicated angular potential. The choice of a dipolar interaction also
makes this work the natural extension of past studies of polymers with èmbedded’ electric
or magnetic dipoles in an external field [18]. Nonetheless, our treatment differs in that the
model is based on short-range interactions between or within chains, which sets our physical
situation apart from external-field models in the same way a polymer chain in a nematic melt
differs from a chain aligned with an imposed external force.

The Hamiltonian of equation (17) is not yet analytically tractable, but we can simplify it
by the identity ∫

ds ds ′ f (rs)f (r′
s)δ[rs − rs ′ ] =

∫
dR (f (rs)δ[rs − R])2, (18)

where f (s) and f (s ′) are arbitrary functions of s and s ′, respectively. We can move further
towards solving this system by establishing an order parameter ψ for the net binormal
alignment such that ψ ∝ ∫ L

0 ds [us ×u′
s]. We likewise address the Edwards contact potential

by adding the ‘line concentration’ field, or the density ρ(R) = ∫
ds δ[rs −R]. These objects

can be introduced to the partition function by adding two delta-functions,

Z =
∫

D[us]
∏
R

δ

(
ρ(R) −

∫ L

0
ds δ[rs − R]

)

× δ

(
ψ(R) −

∫ L

0
ds bs δ[R − rs]

)
e−βH[us ,bs ] (19)

which we can now treat by replacing the δ-functions with their exponentiated forms,∫
D[ξ̃(R)] exp

(∫
dR iξ̃(R) ·

[
ψ(R) −

∫ L

0
ds

(
us × dus

ds

)
δ[R − rs]

])
(20)

and ∫
D[ω̃(R)] exp

(∫
dR

[
iω̃(R)(ρ(R) −

∫ L

0
ds δ[rs − R])

])
. (21)
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Note that we have written out bs explicitly in equation (20). Throughout the remainder of this
paper we will make the field substitutions ξ = iξ̃ and ω = iω̃, to simplify notation. The new
fields ξ, ψ, ω and ρ in the exponential leave us with the effective Hamiltonian

βH[us , ξ(R), ψ(R), ρ(R), ω(R))] =
∫ L

0
ds

[
vp

4

(
d2us

ds2

)2

+
lp

2

(
dus

ds

)2

+ φ
(
u2

s − 1
)− ξ(rs) ·

(
us × dus

ds

)
− ω(rs)

]

+
∫

dR (λ[ψ(R)]2 + ξ(R) · ψ(R) + ν[ρ(R)]2 + ρ(R)ω(R)) (22)

and a partition function

Z =
∫

D[us]D[ξ(R)]D[ω(R)] eβH[us ,ξ(R),ψ(R),ρ(R,ω(R))].

Note that for simplicity we will use βH[us] to denote the Hamiltonian of equation (22) through
the rest of this paper.

4. Mean field theory

The Hamiltonian of equation (22) appears formidable, but we now treat it with the mean-field
approximation that ξ, ψ, ρ and ω each take constant values across all of space, changing
equation (22) to

βH[us] = V [λψ2 + ξ · ψ + νρ2 + ωρ] +
∫ L

0
ds

[
vp

(
d2us

ds2

)2

+
lp

2

(
dus

ds

)2

+ φ(u2
s − 1) − ξ ·

[
us × dus

ds

]
− ω

]
, (23)

where V is the volume of integration over R.
The Hamiltonian of equation (23) readily yields to analysis in terms of the Fourier

components used previously to evaluate equation (3). In terms of the Fourier components, we
have another quadratic form

βH[us] = −(φ + ω)L + V
[
λ(ψα)2 + ξαψα + νρ2 + ωρ

]
+

∞∑
n=−∞

([
vp

4

(
2πn

L

)4

+
lp

2

(
2πn

L

)2

+ φ

]
δαβ − ξγ εαβγ

2iπn

L

)
uα

−nu
β

n′ . (24)

We now integrate over the Gaussian variables un to simplify the partition function Z for the
Hamiltonian given in equation (24). Again taking βF = − ln(Z), we see that

βF = −(φ + ω)L + V [λψ2 + ξ · ψ + νρ2 + ωρ] +
1

2
ln
[

det Mαβ

n,n′
]
, (25)

where

M
αβ

n,n′ =
([

vp

4

(
2πn

L

)4

+
lp

2

(
2πn

L

)2

+ φ

]
δαβ − ξγ εαβγ

2iπn

L

)
δn,n′ . (26)

The problem is somewhat unusual because it involves an antisymmetric component of the
matrix kernel of the Gaussian integral. One of the ways to treat this situation is to diagonalize
this matrix in its (α, β) components. To achieve this we begin by decomposing M

αβ

n,n′ into
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blocks of a given n, i.e. M̃
αβ

1 ⊕ M̃
αβ

2 ⊕ . . . . Since det(A0 ⊕ A1) = det(A0) det(A1), and
det(Ak) = ∏

a λk
a , where λk

a is the ath eigenvalue of Ak , we can rewrite det
(
M

αβ

n,n′
)

as∏
a det(Ma), where Ma is the diagonal eigenvalue matrix Ma

1,1 ⊕ Ma
2,2 ⊕ . . . and a again

serves as the eigenvalue index. We find the nth element Ma
n,n′ of Ma by solving for the roots of

the characteristic equation det
(
M

αβ

n,n′ −Ma
n,n′I

) = 0, where I is the identity matrix. Proceeding
through this calculation, one finds that the three eigenvalues of (3 × 3) matrix Mαβ take the
form

Ma
n,n′ = vp

4

(
2πn

L

)4

+
lp

2

(
2πn

L

)2

+ i

(
2πn

L

)
ξa + φ, (27)

where the coefficients ξa are given by the set

{ξ0, ξ+, ξ−} = {0, i|ξ|,−i|ξ|}. (28)

The imaginary nature of the ξa follows from the antisymmetric character of the matrix εαβγ ,
just as symmetric matrices necessarily produce real-value eigenvalues. Fortunately, we will
see that the imaginary character of the ξa will have no unphysical consequences for our model.

The product
∏

a det(Ma) can now be evaluated with the help of the identity ln[det(f )] =
tr[ln(f )], followed by an integral approximation to the discrete sum over n in the trace. This
approximation has the form trn = ∫∞

−∞ dq L/(2π), where q = 2nπ/L and trn denotes the
sum over n. Thus, the free energy becomes

βF = −(φ + ω)L + V [λψ2 + ξ · ψ + νρ2 + ωρ]

+
1

2

3∑
a=1

∫ ∞

−∞
dq

L

2π
ln

(
vp

4
q4 +

lp

2
q2 + φ − iqξa

)
. (29)

The q-integral in equation (29) can be evaluated exactly by decomposing the quartic
polynomial in q under the logarithm into the product of two quadratic forms in q,

βF = −(φ + ω)L + V [λψ2 + ξ · ψ + νρ2 + ωρ] +
L

4π

∑
a

∫ ∞

−∞
dq

× ln

[(
1

2
√

vpq2 + Haq + Ja

)(
1

2
√

vpq2 − Haq +
φ

Ja

)]
, (30)

where the coefficients Ha and Ja are determined by the set of equations

iJaξa = Ha

(
φ − J 2

a

)
(31)

Ja

lp

2
= −H 2

a Ja +
1

2
√

vp

(
φ + J 2

a

)
. (32)

While these equations admit of multiple solutions for Ha and Ja , we choose to keep continuity
with the classical semi-flexible chain with the Hamiltonian of equation (3) by taking the
solutions which remain analytic in the limit ξa → 0,∀a which reproduces the case of no
binormal interactions, i.e. λ = 0. With this condition, we find Ja to be the solution

Ja = 1√
vp


 lp

2
+ H 2

a ±
√(

lp

2
+ H 2

a

)2

− vpφ


 . (33)

Irrespective of our choice of the sign in front of the square root in equation (33), H 2
a emerges

as the positive, real root of the bi-cubic equation

−1

4
vpξ 2

a +

(
l2
p

4
− vpφ

)
H 2

a + lpH 4
a + H 6

a = 0 (34)
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which for
{
φ, 1

2 lp
}

> 0 happens to be given by

H 2
a = 1

6χa

(
2− 2

3 l2
p + 3(2

4
3 )vpφ − 2lpχa + 2

2
3 χ2

a

)
, (35)

where the shorthand parameter χa stands for

χ3
a = l3

p

4
− 27

4
vpξ 2

a − 9vplpφ +

√
−4

(
l2
p

4
+ 3vpφ

)3

+ 2

(
l3
p

4
− 27

4
vpξ 2

a − 9vplpφ

)2

. (36)

Note that ξa always appears as a square in these solutions, indicating that we need not be
concerned by the fact that the eigenvalues were imaginary. With equation (35) for Ha , we now
have a logarithm of the product of two quadratic functions in q, which we then split into the
sum of the quadratic logarithms. The integral over such a quadratic logarithm can be evaluated
by the relation

∫ ∞

−∞

dq

2π
[ln(a2q

2 + a1q + a0)] ⇒
√

−a2
1 + 4a2a0

4a2
, (37)

where the ak are constants, and ⇒ indicates that we have dropped infinite terms ∝ q|∞−∞ so
as to deal only with the finite part of the excess free energy that depends upon the parameters
of our model. In this way, equation (30) becomes

βF = −(φ + ω)L + V [λψ2 + ξ · ψ + ρω + νρ2]

+
L

2
√

vp

∑
a

(√
2
√

vpJa − H 2
a +

√
2
√

vp

φ

Ja

− H 2
a

)
. (38)

The undetermined Lagrange multiplier φ and auxiliary fields ξ and ω can now be fixed by taking
saddle-point approximations for these variational parameters, which require ∂F/∂φ = 0 and
δF/δξ = 0, δF/δω = 0. One can see that the equation δF/δω = 0 yields a simple result,

−L + Vρ = 0. (39)

This fixes the average value for ρ and produces several constant terms in (38), in addition to
the term V λψ2 that will contribute to the final free energy expansion in powers of this order
parameter.

Unfortunately, the complicated dependence of Ha and Ja on the two remaining mean fields,
φ and ξ, means we do not have an obvious analytic solution for the system of equations that
result from their saddle-point conditions. Nevertheless, we can hope to arrive at approximate
values for φ and ξ simply by following some qualitative characteristics of the free energy.
As a function in the plane of possible {φ, |ξ|} values, the free energy of equation (38) can be
thought of as being made of two parts, a linear ‘background’

Fback = −φL + V ξ · ψ (40)

and the square-root dependent ‘body’

Fbody = L

2
√

vp

∑
a

(√
2
√

vpJa − H 2
a +

√
2
√

vp

φ

Ja

− H 2
a

)
. (41)

We know a saddle point will occur where the gradients of the energies Fback and Fbody cancel,
that is, they have equal magnitudes and point in opposite directions in the {φ, |ξ|} plane.
Finding the exact point at which this occurs is a matter of solving the system of equations
∂F/∂φ = 0 and ∂F/∂ξ = 0, which is not analytically practical, but we can find the general
location of the solution by a rough heuristic argument. First, we observe that Fbody changes
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Figure 5. Contour plot of the body free energy of equation (41) plotted in the (ξ, φ) plane.
The dashed line marks the boundary below which the free energy ceases to be real-valued, while
the solid white line marks the rough boundary of the ‘cliff’ region of rapid change over which the
gradient is steepest.

most rapidly along the ‘cliff’ shown in figure 5 that rises near the line where
√

2
√

vpJa − H 2
a

becomes complex for the ξ -dependent eigenvalues of a = ±. If Fback is steep enough, we can
be confident that the saddle point lies near the cliff, since we need the gradients of Fbody and
Fback to cancel. The cliff’s edge is defined by the equation Im[χ±] = 0, or

4

(
l2
p

4
+ 3vpφ

)3

=
(

l3
p

4
+

27

4
vp|ξ|2 − 9vplpφ

)2

. (42)

We can check that the solution should lie near the cliff by performing a numerical expansion
of the free energy of equation (41) along the φ direction such that φ = φcliff + �φ, where
φcliff is the value of φ set for a given |ξ| in equation (42). For the semi-flexible-like case
where vp = v∗

p we find that at �φ = l−1
p , ∂φFbody ≈ L for all |ξ|. This is the condition for

∂φFbody to cancel ∂φFback, which is −L everywhere. As well, we find that ∂2
φFbody ≈ −lpL

at �φ ≈ l−1
p , indicating that the approximate location for the saddle point is well localized

around �φ = l−1
p . Thus, the solution will lie near the cliff edge for any appreciable persistence

length lp.
We have now approximated the distance �φ away from the cliff edge where we will find

our solution, but |ξ| remains unfixed. We could calculate the distance �|ξ| from the cliff’s
edge where the magnitudes of the derivatives ∂|ξ|Fbody and ∂|ξ|Fback cancel, as we did with φ.
However, this would not tell us where the directions of the gradients cancel, just that they do
so near the cliff. We will therefore take a more general approach.

We still assume that the solution lies near the cliff in Fbody, since the magnitude of ∇Fbody

adopts values from infinity to nearly zero in this region, much as the gradient of
√

x does
for x = O(1). As such, we avoid calculating the magnitude of the gradient of Fbody, since
we assume it adopts the appropriate value to cancel ∇Fback somewhere near the cliff. Since
∇Fbody points nearly perpendicular to the cliff edge for some distance from the cliff edge, as
illustrated by figure 5, we will assume the gradient’s direction is constant in this vicinity. Thus,
we need only account for the direction of the cliff to determine the direction of the gradient.
As we have argued that we need not worry too much about the magnitudes cancelling, we
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need only to solve for where the cliff-edge curve of equation (42) is perpendicular to ∇Fback

to find the point where the directions cancel and so the approximate saddle-point values for φ

and ξ. Doing so, we arrive at the condition

L


 l3

p

8
+

9

2
vplpφ +

(
l2
p

4
+ 3vpφ

) 3
2


 = V |ψ|

√
3vp

2


lp +

√
l2
p

4
+ 3vpφ


 . (43)

Our solution assumes ξ and ψ are antiparallel, as they should be at an extremum of the free
energy. Equation (43) constitutes a cubic equation in φ

27φ3v3
pL4 − 27

4
φ2v2

p

(
2l2

pL4 + 14vplpL2|ψ|2V 2 + 3v2
p|ψ|4V 4

)
+

9

16
φvpl2

p

(
3l2

pL4 + 16vplpL2|ψ|2V 2 + 78v2
p|ψ|4V 4

)
− 27

4
vp

l4
p

16
|ψ|2V 2

(
2lpL2 + 3vp|ψ|2V 2

) = 0. (44)

The resulting (positive real) solution is rather complicated, and we will denote it simply as φc.
Applying φc to equation (42), we solve for an equivalent |ξ|c, and now expand the free energy
of equation (38) in powers of the binormal order parameter magnitude |ψ|.

5. Binormal alignment transition

Substituting the optimal solutions for φc and |ξ|c (which are too cumbersome to write here
explicitly) to the expression for the free energy, equation (38), we expand it in powers of the
binormal order parameter magnitude |ψ|. The result of this expansion takes the form

βF ≈ A

2
|ψ| +

B

4
|ψ|2 +

C

6
|ψ|3 + O(|ψ4|), (45)

where the coefficients are given by

A = V

18


9 +

8
√

3l3
p(

√
8 − 3)√

2vp


 ≈ V


0.50 − 0.093

√
l3
p

vp


 (46)

B = 4V 2

L

[
(
√

8 − 3)
lp

2
+

7
√

3vp

32
√

2lp
+ λ

L

V

]
≈ V 2

L

(
−3.43lp + 1.07

√
vp

lp
+ 4λ

L

V

)
(47)

C = 6V 3

L2

[
(6

√
2 − 7)

√
vplp

2
√

6
− 5vp

256lp

]
≈ V 3

L2

(
1.82

√
vplp − 0.12

vp

lp

)
. (48)

The cubic coefficient C is positive for vp < 240.8l3
p. Since we have already calculated that

v∗
p = 4l3

p

/
9 for a semi-flexible chain without binormal interactions in section 2, this condition

is satisfied automatically for chains with semi-flexible statistics.
One might wonder about the linear coefficient A, which would seem to act like an external

field. Since an external field usually induces a non-zero solution for the order parameter at
all times, this would seem to rule out any interesting phase behaviour. However, |ψ| > 0,
so we need not consider the ‘solution’ of the Landau free energy that occurs at |ψ | < 0 for
A > 0. Since |ψ| is necessarily positive, we can make the substitution V |ψ| ≡ η2, where η
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Figure 6. Graph of free energy βF against the dimensionless order parameter η before the
transition (dashed line, B0 = −2

√
A0C0), at the transition point (solid line, B0 = −2.31

√
A0C0),

and past the transition (dotted line, B0 = −2.7
√

A0C0). We have taken A0, C0 = 1, and fix
βFη=0 = 0 for all plots. Note the presence of the energy barrier � separating the coexisting states
at the transition.

is a non-dimensional scalar. We so obtain the equivalent Landau free energy expansion in a
form more familiar in the theory of phase transformations:

βF = 1
2A0η

2 + 1
4B0η

4 + 1
6C0η

6.

The Landau coefficients, taken in the limit v∗
p = 4l3

p

/
9, are given by

A0 ≈ 0.36 B0 ≈ 4[0.093 lp/L + λ/V ] C0 ≈ 1.16 l2
p

/
L2.

This free energy expansion describes a phase transition from a random-coil state with |ψ| = 0
to a binormally aligned state, similar to what the left end of the sketch in figure 4 looks like.
The transition is first-order (discontinuous) for B = −4

√
AC/3 if {A, C} > 0. It has a

continuous, second-order nature for A < 0. Such transition behaviour is common in, e.g.,
ferroelectric phase transformations [33]. In terms of the model parameters, we reach the
tricritical point of A = 0 when vp ≈ 0.035l3

p. Thus, the transition will be second-order for vp

smaller than this value, and first-order for larger vp. In our case we demand that a polymer
chain is equivalent to the classical semi-flexible case in the absence of binormal interaction,
that is, we set vp = v∗

p. The resulting value of the Landau coefficient A0 indicates that our
system will always exhibit a discontinuous first-order transition.

In this first-order regime, the transition will occur when the strength of effective binormal
interaction λ ≈ −0.244lp(V/L), if we continue using the value for compression volume
parameter v∗

p = 4l3
p

/
9 and the resulting Landau coefficients A0, B0 and C0. This prediction

rests comfortably with our intuition, as it indicates that the system will undergo any aligning
transition at λ � 0, and specifically as the interaction strength |λ| approaches the value
of the chain rigidity, lp. We illustrate the free energy for this first-order transition in
figure 6, graphing it against η above (B0 > −4

√
A0C0/3), at (B0 = −4

√
A0C0/3), and

beyond (B0 < −4
√

A0C0/3) the transition point. Past the transition, we see that the system
maintains a meta-stable disordered state, which is separated from the ordered ground state of
ψ ∼ λ. The two states are held apart by an energetic barrier

� = (B2
0 − 4A0C0)

3
2

12C2

(in dimensionless units).
This barrier controls the transition rate into the ordered state, which in the first

approximation takes the standard Arrhenius form k = k0e−�, where k is the transition rate
and k0 the àttempt rate’ rate in the high-temperature limit.
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We note, however, that the binormal alignment transition can only occur if the ‘line
concentration’ ratio of the space bounding the chain to the chain length, V/L, is itself finite.
In terms of the Edwards contact interaction, equation (39) indicates that the ratio L/V = ρ,
while the quadratic term in ρ in equation (25) suggests for ν > 0 the free energy has a
minimum at ρ → 0. Thus, no transition can take place in the ν > 0 case. Provided we have
Gaussian random-walk statistics in the L → ∞ limit for the ideal chain with no excluded
volume interaction at all (ν = 0) and a radius of gyration Rg ∝ L1/2, we still find that the
transition cannot occur, since V/L ∝ L1/2, appropriately divergent at L → ∞. Ultimately,
one requires a chain in a compact folded conformation, such that R2

g ∝ L
2
3 for L → ∞. This

condition should hold for chains which have undergone collapse to a globular conformation,
as should occur when the coefficient ν in equation (17) becomes negative. In our model, ρ

is no longer bounded in this case, but higher-order contact terms (∝ O(ρ3) or higher) will
prevent the true concentration from becoming infinite [8, 34]. One can also imagine that even
for positive ν, a melt of chains in the interpenetrating regime should satisfy the concentration
requirements for a transition to a binormally aligned state [35].

In fact, this coupling of the binormal alignment transition to a collapse transition resolves
some potential theoretical difficulties associated with the binormal alignment transition. The
persistence length lp ≡ ε/(kT ) and binormal interaction parameter λ ≡ σ/(kT ), both scale
as (kT )−1 if one assumes that the underlying potential energies ε and σ are at best weakly
temperature-dependent. Thus, one would not anticipate passing across the transition condition
λ ≈ −0.244lp(V/L) as one varies the temperature, as the ratio of λ to lp should remain
constant in the first approximation. Admittedly, changes in ion concentration or other solvent
properties might affect the two parameters differently and so change their ratio. Nevertheless,
a temperature-induced binormal alignment transition is still possible, when one crosses the
critical temperature of a collapse transition. Such a transition to a more compact form
will dramatically reduce the (V/L) prefactor in front of lp, and so bring the chain past the
binormal transition point. This is suggestively like the general theoretical understanding of
protein folding, in which a generic collapse transition to a ‘liquid drop’ brings about other
orderings within the chain that culminate in a highly structured native state [36].

One might wonder if the binormal interactions we introduce allow for a collapse to a
globule in the first place. Admittedly, we do not repeat here the full globular ground-state
stability analysis used by Kholodenko, Moore, and others [9, 10] to assess this collapse
transition, but we feel such a step is largely unnecessary. Binormal alignment will certainly
impact the internal structure of a globule, but most likely not its overall stability, since there is
no direct coupling between binormal order ψ and density ρ in the equations that govern the
saddle point of ρ. When we do address the collapse, our approximation of ρ as a constant over
some volume is essentially that which the ground-state analysis authors make to deal with the
complicated nonlinear differential equations that follow from their formalisms.

6. Conclusions

Assuming that the binormally aligned phase we hypothesize exists, one is naturally led to
speculate as to what this phase might look like on a mesoscopic level. For a single chain
without volume interactions, the ground state would clearly be a flat circle or a circular
‘ribbon’, with a radius rcirc ∼ (b2Lvp/|λ|)1/3, the variable b being the polymer width. This
radius is essentially determined by a competition between persistence length (connected to vp

in the above) that will straighten the circle, and the binormal interaction that tightens it. Of
course, real polymers with appreciable chain width and steric interactions cannot collapse to
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Figure 7. Diagram of proposed anti-parallel beta-sheet structure for amyloid strands typical of
insulin and some designed amyloidogenic peptides [42]. Here, the black arrows indicate the
‘direction’ of the peptide chain (C → N) and small arrows the orientation of hydrogen bonds
(O → H).

a flat, completely dense state, but it seems reasonable to claim that the ground state should be
a minimal modification of the flat circle: a regular helix. The pitch p between turns of such a
helix would be roughly the chain width b, and the radius approximately that given above.

This clearly suggests an analogy to helix-forming peptides in nature. In fact, polypeptides
and artificial helicogenic polymers [37–41] possess interactions remarkably similar to the
short-range binormal contact interaction presented in this paper. Almost all such systems
form associations (hydrogen bonds, aromatic linkages, etc.) that favour chains stacking in the
direction perpendicular to their planes of curvature, just as our interaction does. Admittedly,
real polymers like polypeptides cannot form helices of arbitrary radius, since hydrogen-
bonding sites are not spaced continuously on the chain. As well, we have not yet introduced
any terms into the Hamiltonian that would favour a chirally pure helix like α-helices, but the
non-zero value of ψ in equation (44) suggests that chiral symmetry can indeed be broken in
the binormally aligned state of our model. A right-handed helix of arc length L pointing along
the z-axis with a pitch p and a turning rate of w radians per unit arc length s will have a binormal
order parameter ψhelix =

√
1 − (pw/(2π))2Lẑ, which is just the average projection of the

binormal on the ẑ axis. A left-handed helix will have ψ pointing in the opposite direction.
Thus, a totally helical chain consisting of an equal mix of chiralities should have ψ = 0, but
a non-zero ψ indicates some spontaneous symmetry breaking between handednesses in our
system. Chiral symmetry should be preserved in the limit of infinite chain length for polymers
with random-walk statistics, where L/V ∝ limL→∞ L−1/2 = 0 as we have noted earlier.
Indeed, disorder in the L → ∞ limit is exactly what general Lifson–Roig models predict.
Nevertheless, the transition to a binormally aligned state with ψ �= 0 in our model will only
occur if the binormal ordering is coupled to a chain globular collapse such that L/V → 1, a
collapse step that Lifson–Roig models do not incorporate.

We might also see a binormally aligned phase in a solution of long chains, where one
may expect a dense, melt-like phase of directionally aligned chains with aligned binormals.
Such systems are known to exist in polypeptides as β-sheet (amyloid) fibrils, where hydrogen
bonding plays the role of the binormally aligning interaction. The hydrogen bonds, in turn,
tend to line up the peptide ‘ribbons’ into a sheet, as seen in figure 7. Our analysis significantly
strengthens recent suggestions [43, 44] that β-sheet phases arise out of the generic polymer
properties of the polypeptide chain. However, our analysis does not rest on simple geometric
factors to generate fibril-like structures, but explicitly incorporates the anisotropic bonding of
real peptides (already shown to be important in simulation of minimal models of secondary
structure) through the binormal contact interactions we describe. One might readily test the
peptide-polymer analogy by looking for fibrillar phases in some of the artificial helicogenic
polymers discussed above, which we expect will form β-sheet structures when placed in a
melt under some conditions. The analogy with amyloid fibrils also suggests some details
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about the kinetics of the binormal-alignment transition; experimental peptide results suggest
a nucleation-and-growth mechanism in the transition, which may well apply for our model in
the first-order transition regime.

Despite the promise of these further directions, we must note some shortcomings of our
model. Indeed, a significant fault in our analysis is the fact that our choice of the order
parameter |ψ| = |∫ ds bsδ[R − rs]| may not capture all of the information about the system’s
behaviour. After all, the anti-aligning case λ > 0 could result in a system where the chains’
binormal vectors are aligned along a common axis, but have no net binormal orientation, as
occurs with chains’ tangential vectors in a nematic system. This concern could be redressed by
adopting the symmetric part of the binormal orientation tensor �αβ = ∫

ds bα
s bβ

s δ[R − r(s)]
as an order parameter as is done in nematic systems, [2] but the quartic dependence of �αβ

on u(s) raises integrability issues which go beyond this paper’s level of analysis. Yet despite
these difficulties, one can still qualitatively predict some properties of an anti-aligned system.
After all, it seems a good heuristic argument that symmetry requires the chain binormals to
assume an anti-aligned order for some range of parameters with λ > 0, much as they possess
aligned order for some values of vp, lp, etc. for λ < 0. The structure of an anti-aligned phase
may not be much different from that of an aligned phase, save that chains’ binormals will
point in opposing directions when they intersect. The anti-aligning case with λ > 0 would not
have a helical ground state as the λ < 0 situation does, but pleated-sheet ground states should
be present in both.

In keeping with the issue of modelling an anti-aligned system, one might also object
that it would be better to attempt to model a ‘binormal nematic’ by changing the binormal
interaction to (bs · bs ′)2δ[rs − rs ′ ]. This would certainly be a better model of interactions
between some aromatic rings, which are not as specifically oriented as an O → H hydrogen
bond. Unfortunately, such a model would encounter the same integrability problem with
quartic dependence on us as a model with the order parameter �αβ , but such a system would
likely be amenable to Monte Carlo analysis.

It is also worth noting that we expect difficulties in applying our theory extremely close
to the transition point, as it is only mean-field and neglects fluctuations. The mean-field
character of our analysis may also raise troubles with the order of the transition, which mean-
field theory does not always predict correctly [33], again as a consequence of neglecting
fluctuations. Still, the success of Edwards and Gupta’s mean-field theory of nematic polymers
at predicting experimental results [2, 3, 45] gives us confidence in general relevance of our
model and points the way towards the increased application of analytic methods to complex
polymer systems.
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